Monitoring the effects of therapeutic interventions in depression through self-assessments

Submitted: May 10, 2021
Accepted: September 7, 2021
Published: December 20, 2021
Abstract Views: 1456
PDF: 409
HTML: 32
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.


The treatment of major psychiatric disorders is an arduous and thorny path for the patients concerned, characterized by polypharmacy, massive adverse side effects, modest prospects of success, and constantly declining response rates. The more important is the early detection of psychiatric disorders prior to the development of clinically relevant symptoms, so that people can benefit from early interventions. A well-proven approach to monitoring mental health relies on voice analysis. This method has been successfully used with psychiatric patients to ‘objectively’ document the progress of improvement or the onset of relapse. The studies with psychiatric patients over 2-4 weeks demonstrated that daily voice assessments have a notable therapeutic effect in themselves. Therefore, daily voice assessments appear to be a lowthreshold form of therapeutic means that may be realized through self-assessments. To evaluate performance and reliability of this approach, we have carried out a longitudinal study on 82 university students in 3 different countries with daily assessments over 2 weeks. The sample included 41 males (mean age 24.2±3.83 years) and 41 females (mean age 21.6±2.05 years). Unlike other research in the field, this study was not concerned with the classification of individuals in terms of diagnostic categories. The focus lay on the monitoring aspect and the extent to which the effects of therapeutic interventions or of behavioural changes are visible in the results of self-assessment voice analyses. The test persons showed an over-proportionally good adherence to the daily voice analysis scheme. The accumulated data were of generally high quality: sufficiently high signal levels, a very limited number of movement artifacts, and little to no interfering background noise. The method was sufficiently sensitive to detect: i) habituation effects when test persons became used to the daily procedure; and ii) short-term fluctuations that exceeded prespecified thresholds and reached significance. Results are directly interpretable and provide information about what is going well, what is going less well, and where there is a need for action. The proposed self-assessment approach was found to be well-suited to serve as a health-monitoring tool for subjects with an elevated vulnerability to psychiatric disorders or to stress-induced mental health problems. Daily voice assessments are in fact a low-threshold form of therapeutic means that can be realized through selfassessments, that requires only little effort, can be carried out in the test person’s own home, and has the potential to strengthen resilience and to induce positive behavioural changes.



PlumX Metrics


Download data is not yet available.


Albert, N., & Weibell, M. A. (2019). The outcome of early intervention in first episode psychosis. International Reviews of Psychiatry. 31(5-6), 413-424. doi:10.1080/09540261.2019.1643703. DOI:
Albus, C. (2010). Psychological and social factors in coronary heart disease. Annals of Medicine, 42(7), 487-494. doi:10.3109/07853890.2010.515605. DOI:
Arakawa, T. (2018). Recent research and developing trends of wearable sensors for detecting blood pressure. Sensors (Basel), 18(9), 2772. doi:10.3390/s18092772. DOI:
Arevian, A. C., Bone, D., Malandrakis, N., Martinez, V. R., Wells, K. B., Miklowitz, D. J., & Narayanan, S. (2020). Clinical state tracking in serious mental illness through computational analysis of speech. PLoS One, 15(1), e0225695. doi:10.1371/journal.pone.0225695. eCollection 2020. DOI:
Aschbacher, K., O'Donovan, A., Wolkowitz, O. M., Dhabhar, F. S., Su, Y., & Epel, E. (2013). Good stress, bad stress and oxidative stress: insights from anticipatory cortisol reactivity. Psychoneuroendocrinology, 38(9), 1698-1708. doi:10.1016/j.psyneuen.2013.02.004. DOI:
Bhake, R., Kluckner, V., Stassen, H. H., Russell, G. M., Leendertz, J., Stevens, K., Linthorst, A. C. E., & Lightman, S. (2019). Continuous free cortisol profiles - circadian rhythms in healthy men. Journal of Clinical Endocrinology & Metabolism, 104(12), 5935-5947. doi:10.1210/jc.2019-00449. DOI:
Braun, S., Botella, C., Bridler, R., Chmetz, F., Delfino, J. P., Herzig, D., Kluckner, V. J., Mohr, C., Moragrega, I., Schrag, Y., Seifritz, E., Soler, C., & Stassen, H. H. (2014). Affective state and voice: cross-cultural assessment of speaking behaviour and voice sound characteristics. a normative multi-center study of 577+36 healthy subjects. Psychopathology, 47(5), 327-340. doi:10.1159/000363247. DOI:
Braun, S., Annovazzi, C., Botella, C., Bridler, R., Camussi, E., Delfino, J. P., Mohr, C., Moragrega, I., Papagno, C., Pisoni, A., Soler, C., Seifritz, E., & Stassen, H. H. (2016). Assessing chronic stress, coping skills and mood disorders through speech analysis. A self- assessment ‘Voice App’ for laptops, tablets, and smartphones. Psychopathology, 49(6), 406-419. doi:10.1159/000450959. DOI:
Calear, A.L., & Christensen, H. (2010). Systematic review of school-based prevention and early intervention programs for depression. Journal of Adolescence, 33(3), 429-38. doi:10.1016/j.adolescence.2009.07.004. DOI:
Chopra, K., Katz, J. L., Quilty, L. C., Matthews, S., Ravindran, A., & Levitan, R. D. (2019). Extraversion modulates cortisol responses to acute social stress in chronic major depression. Psychoneuroendocrinology, 103, 316-323. doi:10.1016/j.psyneuen.2019.02.008. DOI:
Cohen, A. S., Renshaw, T. L., Mitchell, K. R., & Kim, Y. (2016). A psychometric investigation of ‘macroscopic’ speech measures for clinical and psychological science. Behaviour Research Methods, 48(2), 475-486. doi:10.3758/s13428-015-0584-1. DOI:
Corley, L. (2013). Prevalence of mental health issues among college students: how do advisers equip themselves? The Mentor, Available from:
Cummins, N., Scherer, S., Krajewski, J., Schnieder, S., Epps, J., & Quatieri, T. (2015). A review of depression and suicide risk assessment using speech analysis. Speech Communication, 17, 10-49. doi:10.1016/j.specom.2015.03.004 DOI:
Cummins, N., Baird, A., & Schuller, B. W. (2018). Speech analysis for health: Current state-of-the-art and the increasing impact of deep learning. Methods, 151, 41-54. doi:10.1016/j.ymeth.2018.07.007. DOI:
Davidson, M. (2018). The debate regarding maintenance treatment with antipsychotic drugs in schizophrenia. Dialogues in Clinical Neuroscience, 20(3), 2015-2021. doi:10.31887/DCNS.2018.20.3/mdavidson. DOI:
Delfino, J. P., Barragán, E., Botella, C., Braun, S., Camussi, E., Chafrat, V., Mohr, C., Bridler, R., Lott, P., Moragrega, I., Papagno, C., Sanchez, S., Soler, C., Seifritz, E., & Stassen, H. H. (2015). Quantifying Insufficient Coping Behaviour under Chronic Stress. A cross-cultural study of 1,303 students from Italy, Spain, and Argentina. Psychopathology, 48, 230-239. doi:10.1159/000381400. DOI:
Esler, M., Eikelis, N., Schlaich, M., Lambert, G., Alvarenga, M., Dawood, T., Kaye, D., Barton, D., Pier, C., Guo, L., Brenchley, C., Jennings, G., & Lambert, E. (2008). Chronic mental stress is a cause of essential hypertension: presence of biological markers of stress. Clinical and Experimental Pharmacology and Physiology, 35(4), 498-502. doi:10.1111/j.1440-1681.2008.04904.x. DOI:
Faurholt-Jepsen, M., Busk, J., Frost, M., Vinberg, M., Christensen, E. M., Winther, O., Bardram, J. E., & Kessing, L. V. (2016). Voice analysis as an objective state marker in bipolar disorder. Translational Psychiatry, 6, e856. doi:10.1038/tp.2016.123. DOI:
Garrett, K. L., & Healey, E. C. (1987). An acoustic analysis of fluctuations in the voices of normal adult speakers across three times of day. Journal of Acoustical Society of America 82, 58-62. doi:10.1121/1.395437. DOI:
Grabowski, K., Rynkiewicz, A., Lassalle, A., Baron-Cohen, S., Schuller, B., Cummins, N., Baird, A., Podgórska-Bednarz, J., Pieniążek, A., & Łucka, I. (2019). Emotional expression in psychiatric conditions: New technology for clinicians. Psychiatry and Clinical Neurosciences, 73(2), 0-62. doi:10.1111/pcn.12799. DOI:
Hashim, N. W., Wilkes, M., Salomon, R., Meggs, J., & France, D. J. (2017). Evaluation of voice acoustics as predictors of clinical depression scores. Journal of Voice, 31(2), 256.e1-256.e6. doi:10.1016/j.jvoice.2016.06.006. DOI:
Hollien, H., & Darby, J. K. (1979). Acoustic comparisons of psychotic and non-psychotic voices. In: Hollien H., Hollien P. (Eds), Current issues in the phonetic sciences (pp. 609-614). Amsterdam: John Benjamins. doi:10.1075/cilt.9.66hol. DOI:
Hunt, J., & Eisenberg, D. (2010). Mental health problems and help-seeking behaviour among college students. Journal of Adolescents Health, 46(1), 3-10. doi:10.1016/j.jadohealth.2009.08.008. DOI:
Johar, S. (2016). Emotion, affect and personality in speech. The bias of language and paralanguage. Heidelberg: Springer. doi:10.1007/978-3-319-28047-9_3. DOI:
Kessler, R. C., Amminger, G. P., Aguilar-Gaxiola, S., Alonso, J., Lee, S., & Ustun, T. B. (2007). Age of onset of mental disorders: a review of recent literature. Current Opinion in Psychiatry, 20, 359-364. doi:10.1097/YCO.0b013e32816ebc8c. DOI:
Kraepelin, E. (1921). Manic depressive insanity and paranoia (trans. By M. Barclay). Edinburgh, UK: Livingstone. DOI:
Lee, D.Y., Kim, E., & Choi, M. H. (2015). Technical and clinical aspects of cortisol as a biochemical marker of chronic stress. BMB Reports, 48(4), 209-216. doi:10.5483/bmbrep.2015.48.4.275. DOI:
Li, Y., Lindsey, B. J., Yin, X., & Chen, W. (2012). A comparison of American and Chinese students’ perceived stress, coping styles, and health promotion practices. Journal of Student Affairs Research and Practice, 49(2), 211-227. doi:10.1515/jsarp-2012-6298. DOI:
Lortie, C. L., Thibeault, M., Guitton, M. J., & Tremblay, P. (2015). Effects of age on the amplitude, frequency and perceived quality of voice. Age (Dordrecht), 37(6), 117. doi:10.1007/s11357-015-9854-1. DOI:
Lott, P. R., Guggenbühl, S., Schneeberger, A., Pulver, A. E., & Stassen, H. H. (2002). Linguistic analysis of the speech output of schizophrenic, bipolar, and depressive patients. Psychopathology, 35(4), 220-227. doi:10.1159/000063831. DOI:
Lötscher, K., Anghelescu, I.G., Braun, S., Bridler, R., & Stassen, H. H. (2010). Polypharmacy in psychiatry: clinical practice versus empirical evidence. European Neuropsychopharmacology, 20 (Suppl. 3), 378-379. DOI:
McGinnis, E. W., Anderau, S. P., Hruschak, J., Gurchiek, R. D., Lopez-Duran, N. L., Fitzgerald, K., Rosenblum, K. L., Muzik, M., & McGinnis, R. S. (2019). Giving voice to vulnerable children: machine learning analysis of speech detects anxiety and depression in early childhood. IEEE Journal of Biomed Health Information, 23(6), 2294-2301. doi:10.1109/JBHI.2019.2913590. DOI:
Mental Health Foundation. (2016). Fundamental facts about mental health. London: Mental Health Foundation.
Mohr, C., Braun, S., Bridler, R., Chmetz, F., Delfino, J. P., Kluckner, V. J., Lott, P., Schrag, Y., Seifritz, E., & Stassen, H. H. (2014). Insufficient coping behaviour under chronic stress and vulnerability to psychiatric disorders. Psychopathology, 47, 235-243. doi:10.1159/000356398. DOI:
Oswald, L. M., Zandi, P., Nestadt, G., Potash, J. B., Kalaydjian, A. E., & Wand, G. S. (2006). Relationship between cortisol response to stress and personality. Neuropsychopharmacology, 31, 1583-1591. doi:10.1038/sj.npp.1301012. DOI:
Pigott, H. E., Leventhal, A. M., Alter, G. S., & Boren, J. J. (2010). Efficacy and effectiveness of antidepressants: current status of research. Psychotherapy and Psychosomatics, 79(5), 267-279. doi:10.1159/000318293. DOI:
Püschel, J., Stassen, H. H., Bomben, G., Scharfetter, C., & Hell, D. (1998). Speaking behaviour and voice sound characteristics in acute schizophrenia. Journal of Psychiatric Research, 32, 89-97. doi:10.1016/S0022-3956(98)00046-6. DOI:
Safer, D. J. (2019). Overprescribed medication medications for US adults: four major examples. Journal of Clinical Medicine Research, 11(9), 617-622. doi:10.14740/jocmr3906. DOI:
Schuch, F. B., Vancampfort, D., Firth, J., Rosenbaum, S., Ward, P. B., Silva, E. S., Hallgren, M., Ponce De Leon, A., Dunn, A. L., Deslandes, A. C., Fleck, M. P., Carvalho, A. F., & Stubbs, B. (2018). Physical activity and incident depression: a meta-analysis of prospective cohort studies. American Journal of Psychiatry, 175(7), 631-648. doi:10.1176/appi.ajp.2018.17111194. DOI:
Sila-Nowicka, K., & Thakuriah, P. (2019). Multi-sensor movement analysis for transport safety and health applications. PLoS One, 14(1), e0210090. doi:10.1371/journal.pone.0210090. DOI:
Slavich, G. M., Taylor, S., & Picard, R. W. (2019). Stress measurement using speech: Recent advancements, validation issues, and ethical and privacy considerations. Stress, 22(4), 408-413. doi:10.1080/10253890.2019.1584180. DOI:
Stallman, H. M., & Shochet, I. M. (2009). Prevalence of mental health problems in Australian university health services. Australian Psychologist, 44(2), 122-127. doi:10.1080/00050060902733727 DOI:
Stallman, H. M. (2010). Psychological distress in university students: A comparison with general population data. Australian Psychologist, 45(4), 249-257. doi:10.1080/00050067.2010.482109. DOI:
Stassen, H. H., Kuny, S., & Hell, D. (1998). The speech analysis approach to determining onset of improvement under antidepressants. European Neuropsychopharmacology, 8(4), 303-310. doi:10.1016/s0924-977x(97)00090-4. DOI:
Stassen, H. H., Angst, J., Hell, D., Scharfetter, C., & Szegedi, A. (2007). Is there a common resilience mechanism underlying antidepressant drug response? Evidence from 2848 patients. Journal of Clinical Psychiatry, 68(8), 1195-1205. doi:10.4088/jcp.v68n0805. DOI:
Stassen, H. H., Anghelescu, I.G., Angst, J., Böker, H., Lötscher, K., Rujescu, D., Szegedi, A., & Scharfetter, C. (2011). Predicting response to psychopharmacological treatment. Survey of recent results. Pharmacopsychiatry, 44, 263-272. doi:10.1055/s-0031-1286290. DOI:
Stassen, H. H., Bachmann, S., Bridler, R., Cattapan, K., Herzig, D., Schneeberger, A., & Seifritz, E. (2021). Inflammatory processes linked to major depression and schizophrenic disorders and the effects of polypharmacy in psychiatry: Evidence from a longitudinal study of 279 patients under therapy. European Archives of Psychiatry and Clinical Neurosciences, 271, 507-520. doi:10.1007/s00406-020-01169-0. DOI:
Staufenbiel, S. M., Penninx, B. W., Spijker, A. T., Elzinga, B. M., & van Rossum, E. F. (2013). Hair cortisol, stress exposure, and mental health in humans: a systematic review. Psychoneuroendocrinology, 38, 1220-1235. doi:10.1016/j.psyneuen.2012.11.015. DOI:
Taguchi, T., Tachikawa, H., Nemoto, K., Suzuki, M., Nagano, T., Tachibana, R., Nishimura, M., & Arai, T. (2018). Major depressive disorder discrimination using vocal acoustic features. Journal of Affective Disorders, 225, 214-220. doi:10.1016/j.jad.2017.08.038. DOI:
Titze, I. R. (1994). Principles of voice production. Englewood Cliffs, NJ: Prentice Hall.
Wang, J., Zhang, L., Liu, T., Pan, W., Hu, B., & Zhu, T. (2019). Acoustic differences between healthy and depressed people: a cross-situation study. BMC Psychiatry, 19(1), 300. doi:10.1186/s12888-019-2300-7. DOI:
Zhang, M., Bridler, R., Mohr, C., Moragrega, I., Sun, N., Xu, Z., Yang, Z., Possenti, M., & Stassen, H. H. (2019). Early detection of the risk of developing psychiatric disorders: a study of 461 Chinese University Students under chronic stress. Psychopathology, 52(6), 367-377. doi:10.1159/000505787. DOI:

How to Cite

Moragrega, I., Bridler, R., Mohr, C., Possenti, M., Rochat, D., Sanchez Parramon, J., & Stassen, H. H. (2021). Monitoring the effects of therapeutic interventions in depression through self-assessments. Research in Psychotherapy: Psychopathology, Process and Outcome, 24(3).